Wednesday, December 3, 2008

Air Power Australia, Flanker Analysis Examined

Unless you have stumbled across this blog by complete accident and are looking for financial commentary or a V8 page you’ve probably heard of Dr Carlo Kopp. Indeed he is perhaps the most famous, or infamous, analyst within the wider Australian defence community. The “good Dr” contributes to many respectable publications such as Defence Today Magazine on a regular basis, and often reports on a number of defence related issues which are in my opinion usually genuine and thoughtful articles. However his rather uncontroversial additions to various defence media are probably not the reason why you have heard of Dr Kopp. His most controversial articles and analysis all stem from the debate over the RAAF’s choice of combat aircraft and its viability when facing advanced Russian Flanker derivatives. His website “Air Power Australia” has flooded the internet with articles which invariably end with the conclusion on the outright inferiority of all western alternatives apart from the F-22A when facing the Super Flanker threat.

While the government went about considering tenders for an eventual replacement of the F/A-18C/D’s and F-111 fleet Dr Kopp and other associates (a Mr Goon included) lodged a submission to the DoD. Under Kopp’s plan the RAAF would acquire ~50 F-22A’s and retain 24 ‘upgraded’ F-111S’s. When this option was not chosen by the RAAF (the F-35 was chosen and then the F/A-18F as an interim solution) the Dr launched his PR campaign, arguing that only the F-22A could provide the RAAF with the necessary level of air dominance when facing the advanced Flanker threat. Soon the internet was flooded by APA PDF’s and his various pages on the APA site with long and seemingly comprehensive arguments illustrating the dire mistake the RAAF had made, and the inferiority of the chosen designs. To the layman (or even someone with a casual interest in air power) his arguments are very persuasive; indeed a younger, more impressionable Ozzy was swayed by the doctor’s conviction and apparent technical mastery. Debates on many forums included Kopp’s arguments, many of which had apparently not appeared before, it seemed that this Australian defence journalist had swayed thousands all over the world to his view of the contemporary battle space.


However after time, careful thought, significant discussion and a good dose of listening, reading and learning a slightly older, more sceptical Ozzy began to question the “good Dr’s” arguments and conclusions. Indeed it soon became apparent that Carlo Kopp’s work on contemporary air combat is, for the most part, an exercise in lobbying. After close examination it’s apparent that the vast majority of Dr Kopp’s arguments are based on mistruths, bogus analysis and conclusions drawn after only examining beneficial considerations. Below is the first section of a PDF authored by Dr Kopp available at his website, It is in many ways a typical piece of Kopp’s work which is why I decided to critically examine it. There was more to the piece but I could have gone on for ever; this two page article exemplifies Kopp’s major arguments and clearly illustrates the tactics and devices he uses to put together a persuasive and seemingly sound argument. Below I have outlined 16 major misrepresentations of fact, omissions, oversimplifications and deliberately partial analysis Kopp made on this 2 page journey in order to arrive at the damning conclusion that the F-35A or F/A-18F could at best, only hope to achieve parity when facing an advanced Flanker threat.


I have not altered the good doctor’s work outlined in blue below. The article full can be found here:


http://www.ausairpower.net/APA-Rus-BVR-AAM.html


Russian BVR Combat Philosophy

The Russian paradigm of BVR combat has its origins in the Cold War period, when Soviet operational analysis indicated that the low kill probability of missile seekers and airframes, especially if degraded by countermeasures, would be a major impediment to success. By the 1970s the standard Soviet technique in a BVR missile launch was to salvo two rounds, a semiactive radar homing weapon and a heatseeking weapon. To this effect some Soviet fighters even included a weapons select mode which automatically sequenced the launch of two rounds for optimal separation.


The mathematics of multiple round missile engagements are unambiguous - the size of a missile salvo launched is a stronger driver of success than the actual kill probability of the individual missiles. If the missiles are wholly identical by type, then the following curves may be optimistic, insofar as a factor degrading the kill probability of one missile is apt to have a similar effect on its siblings in a salvo. However, where the missiles differ by seeker type and guidance control laws, then the assumption of statistically independent missile shots is very much stronger.


A question often asked is why are Sukhoi Flanker variants equipped to carry between eight and twelve BVR missiles? The answer is a simple one - so they can fire more than one three or four round BVR missile salvo during the opening phases of an engagement. In this fashion the aircraft being targeted has a difficult problem as it must jam, decoy and/or outmanoeuvre three or four tightly spaced inbound missiles. Even if we assume a mediocre per round kill probability of 30 percent, a four round salvo still exceeds a total kill probability of 75 percent.

1) This all assumes the engagement occurs within the Flanker/R-27’s No Escape Zone/Volume which is unrealistic in most scenarios. The NEZ for an R-27ER vs. an F/A-18F with detection at launch would probably sit somewhere in the 30~40nm range mark, just over half of the stated maximum range of the R-27 and well under half of the AIM-120D’s maximum range. If the launch occurs outside this range then multiple launches will have no additional effect on the engagement, i.e. if the target can outrun one incoming then he can outrun 10.

A critical question which must be asked when assessing the effectiveness of Russian BVR tactics is that of Western tactics and the effectiveness of the AIM-120 AMRAAM, the principal Western BVR fighter weapon. The AIM-120A AMRAAM was introduced at the end of the Cold War to provide a "fire and forget" active radar guided weapon with a midcourse inertial guidance system and datalink support provided by the radar on the launch aircraft, allowing multiple concurrent shots. The AIM-120A was followed by the incrementally improved B-model, and then by the "short span" AIM-120C-3 sized to fit the F-22A weapon bay. The AIM-120C-4 has better kinematic performance introducing a larger rocket motor and shorter control section, and a better warhead, while the AIM-120C-6 introduced a better fuse. The latest AIM-120D introduces a redesigned seeker built for better durability in high vibration carriage environments, a two way datalink, GPS to supplement inertial guidance, incrementally improved kinematics, and better seeker performance against high off-boresight targets.

2) Kopp conveniently forgets to mention that the AIM-120D’s “multi burn” rocket motor has extended its maximum range to 100nm, 30nm greater reach than the R-27ER long burn. Additionally every stage in the AIM-120’s evolution has systematically improved its ECCM package, and even the AIM-120B included a home on jam feature rendering noise jamming (the type most widely used in the 90’s) obsolete.

The performance of the AIM-120A/B/C models in combat to date has not been spectacular. Test range trials have resulted in stated kill probabilities of 85 percent out of 214 launches for the AIM-120C variant. Combat statistics for all three variants are less stellar, amounting to, according to US sources, ten kills (including a friendly fire incident against a UH-60) of which six were genuine BVR shots, for the expenditure of just over a dozen AIM-120 rounds. The important parameter is that every single target was not equipped with a modern defensive electronic warfare package and therefore not representative of a state-of-the-art Flanker in a modern BVR engagement. Against such "soft" targets the AIM-120 has displayed a kill probability of less than 50 percent [1]. It is an open question whether the AIM-120D when challenged with a modern DRFM (Digital RF Memory) based monopulse trackbreaking jammer will be able to significantly exceed the 50 percent order of magnitude kill probability of prior combat launches, let alone replicate the 85 percent performance achieved in ideal test range conditions [2].

3) Here Dr Kopp mistakes average PK with an individual missile shot’s PK which is what is meant to be discussed here. An individual missile shot’s PK is utterly dependant on the details of the missile launch. These include range to target, altitude relative to target, energy state, target energy state, target bearing/angle of track, target ECM and the individual missiles ECCM. What this means in real terms is if an AIM-120D was fired at a supersonic MiG-21 at 90nm when the launch platform was in a low energy state and the target was fleeing the PK would be less than 5%. According to Kopp’s line of reason the AIM-120D must have a PK under 20%. Thus taking the total number of AIM-120 combat shots and taking the % of successes and then attempting to use those numbers as some sort of evidence for a particular missile shots probability of success is a fundamentally flawed line of logic in my opinion. In sub surface naval engagements, a low PK torpedo shot may be taken in order to facilitate a response from the enemy, such as to force him to come shallow or disrupt the enemies firing solution by compelling them to manoeuvre. The same stands for A2A engagements. Many A2A engagements in the 90’s occurred with western fighters defending strike packages, and escorting fighters may have made shots that had a low probability of success in order to defend the package. In short PK is not an arbitrary number, it’s wholly dependant on the circumstances of the launch. While some forms of SJP may have effected the PK of individual shots is not clear by any means that non state of the art SPJ’s would have had a significant effect considering the AMRAAM’s HOJ and ECCM package.


4) The AIM-120D has the most advanced ECCM package available on the BVR missile market to date. Modern DRFM deception jammers work by analysing the seekers pulse frequencies and then transmitting a similar signal in order to deceive the missile or reduce the seekers/FCR’s range through active cancellation. There are two fundamental vulnerabilities with this kind of technology. One is if you don’t understand the algorithms that govern the threat seekers actions and ECCM capability it may well be that the seeker will see the EM source attempting to jam it. The second is if that occurs then the SPJ acts like a beacon as the seeker just follows the EM source to the target. Thus deception jamming is extremely intel dependant, because if you don’t understand how the threat seeker works or how its “brain” thinks SPJ’s of this type can, in fact, be counter productive. The reality is even though this technology can be quite effective if it is more advanced than the seeker technology opposing it; it is far from the “panacea” portrayed by Kopp.


Where does this leave Western air forces equipped with the AIM-120 when confronting Flankers armed with up to three times the number of BVR missiles?

Illustrative examples are the F/A-18E/F Super Hornet and F-35 JSF, the latter armed in an air superiority configuration with two, the former with up to six AIM-120s [3]. Assuming the Flanker driver does not exploit his superior missile kinematic range and shoot first - an optimistic assumption - then the best case kill probability for the AIM-120 shooter firing two to four rounds is better than 90 percent. However, if we assume that hostile jamming and manoeuvre degrade the kill probability to around 50 percent - a reasonably optimistic statistical baseline here – then the total kill probability for a two round salvo is optimistically around 75 percent, and for a four round salvo over 90 percent. Arguably good odds for the four round salvo, only if the missile kill probability sits at 50 percent, but the F/A-18E/F or F-35 JSF will have expended all or most of its warload of AIM-120s and be unable to continue in BVR combat.

In a "many versus many" engagement, the low speed of both types leaves them unable to disengage and will see both types subsequently killed by another Flanker. This best case "many versus many" engagement scenario sees the F/A-18E/F or F-35 JSF being traded one for one with Su-30MK/Su-35BM Flankers in BVR combat, which is the general assumption made for WVR combat between like opponents, and representative of many historical attrition air campaign statistics. To achieve this best case "many versus many" outcome of trading F/A-18E/F or F-35 JSF one for one, we have stacked a series of assumptions against the Flanker - dumb Flanker pilots not exploiting a missile kinematic range advantage, dumb Flanker pilots not exploiting a firepower advantage, Russian BVR missile seekers no better than the AIM-120, and Russian DRFM monopulse jammers achieving a less than 50 percent degradation of AIM-120 kill probability [4].


5) First let me address a clear misrepresentation of fact. The F/A-18F has 8 AMRAAM capable hard points. Additionally is has a dual rail launcher allowing the 6 underwing hard points to carry two each. Theoretically the platform could carry 14 AIM-120’s and 2 AIM-9X’s for a grand total of 16 missiles, significantly more than the SU-30. In real terms the two inboard hard points would likely be taken up by external fuel carriage, reducing the AMRAAM load to 10. 12 AAM’s is a realistic war load for the super hornet, though 10 is more typical (identical to a Flanker). At IOC the F-35A will be able to launch with 10 AMRAAM’s on 10 internal and external hard points if need be, and currently a dual rail, internal AMRAAM launcher is being developed under LM’s spiral development program which will allow 12; again comparable or better to a Flanker. In real terms there is no real advantage in a Flankers war load, and the Hornet/Lightning will be carrying weapons a full generation more advanced then their Russian adversaries.











Left and Right: F/A-18F with a 10 AAM missile load displaying the dual rail launcher, note that the outboard under-wing hard-points are not equipped with the dual rail launcher. Additionally the inboard under-wing hard-points are available for external fuel carriage making this an operational configuration.


6) The ability to achieve first shot is not dominated by kinematical performance in the vast majority of cases; information is the critical asset in this instance. The F/A-18F has significant RCS reduction in the frontal aspect, reducing its clean RCS to<.5m2 (likely .1m2). Even when carrying weapons the Rhino’s frontal RCS would be far smaller than a Flanker’s (SU-30’s frontal RCS is an estimated 4m2 + weapons). In real terms this will significantly reduce the flanker’s detection radius (although not to the level of VLO). Furthermore the F/A-18F is equipped with the AN/APG-79, LPI AESA radar. The exact detection and track performance of Irbis/BARS PESA and the APG-79 AESA radars are classified, but considering the generic performance bonuses AESA systems enjoy it is probable the AN/APG-79 provides better D&T performance. Additionally the LPI AESA’s random frequency modulation makes it extremely difficult to effectively jam; the system should enjoy much better ECCM performance than its Russian peers.


But even if the generationally inferior Russian radars enjoy comparable D&T performance the Rhino’s reduced RCS means it will detect the Flanker first. Furthermore the massive power output and single frequency use of the Russian super PESA’s means they will be detectable by the Rhino’s fully digital AN/ALR-67(v)3 RWR well outside said radars detection footprint. The combination of ESM/RWR detection, superior radar performance and smaller RCS ensures that in the vast majority of scenarios the Rhino will detect the Flanker first. First look is critical to enabling first shot (hence the term first look, first shot, first kill). Once you detect the threat without being counter detected the pilot can take the positional advantage or disengage at will, by achieving first look the Rhino enjoys the ability to prosecute the engagement on his own terms. Attaining positional advantage significantly increases the chances of a successful engagement; engaging the enemy while remaining undetected (outside of the threats radar footprint i.e. anywhere but in front of it) while in a high energy state and possibly from higher altitude will have devastating effects on the target.


Delaying the detection of the missile shot as long as possible increases the NEZ dramatically, gives the pilot less time to react and keeps end game energy high through lack of target evasion. First look has nothing to do with kinematical performance and everything to do with information dominance, the high ground in contemporary warfare and the dominating factor in modern BVR engagements. Considering the Super Hornet will most likely enjoy first look, and is equipped with BVR missiles that provide a 30% larger engagement envelope I think its reasonable to assume in most occasions the F/A-18F will achieve first shot, and again kinematic performance has little to do with it.


7) Flanker’s missiles are INFERIOR in terms of range performance. Longest ranging Russian missile equipping the flanker series in the foreseeable future is the R-27 Long Burn. This missile has a range maximum engagement envelope of 70nm (source Carlo Kopp). The F/A-18F on the other hand is equipped with the AIM-120D. That missile has a maximum engagement envelope of >100nm.








8) The F-35 is an LO platform with an RCS smaller than .001m2 (comparable to a golf ball or insect). Throughout the Flankers operational lifespan (and the foreseeable future) BVR engagements will be dominated by X band radars, just like those equipping the Flanker. Thus the Flanker will likely not have the ability to engage the F-35 in the BVR regime full stop, let alone achieve 1 for 1 kill rates in the 100km+ range (the F-35’s likely AIM-120D launch radius).


9) The R-77 is the Flankers primary active radar homing missile developed in the early 90’s, along with the R-27ER/EA which is in effect an R-27 missile body equipped with a long burn motor and the R-77’s seeker. The R-27ER/EA is the most potent missile in the Flankers inventory; however it enjoys identical seeker performance to the R-77. As we all know the driving force behind Russian weapons development in the post Cold War era has been the export market. Clearly the Russian arms manufactures have abandoned their previous qualms on exporting degraded or inferior Russian equipment. This is illustrated by the fact that the most capable Russian built fighters operational anywhere are flown by the Indian air force, and the export of top line Russian ASCM’s such as the “Sunburn”. Therefore it would be atypical for Russian manufacturers to have more advanced seeker technology in production and it not to be available on the open arms market. The R-77E (export model) has been available for export for over a decade, and according to Janes the seeker has had no major upgrades during that time, which would infer that the seeker technology used in the R-77E (and hence R-27ER/EA) is in fact 1990’s technology (comparable to the AIM-120A/B). The AIM-120’s seeker package has been upgraded 6 times in that timeframe, and the D model introduces features like a 2 way data-link which can transmit seeker generated data back to the launch platform. The seeker hardware must be significantly more sophisticated to allow this to occur. Thus it is clearly a reasonable assumption to state that the AIM-120D provides a more advanced seeker than the R-77E or R-27ER/EA.


A competent Flanker driver gets the first shot with three or four round salvo of long burn R-27 variants, with mixed seekers, leaving one or two remaining salvoes of BVR missiles on his rails, and the same Flanker driver will have modern DRFM monopulse jammers capable of causing likely much more than a 50 percent degradation of AIM-120 kill probability. With a thrust vectoring engine capability (TVC), the Flanker driver has the option of making himself into a very
difficult endgame target for the AIM-120 regardless of the capability of his jamming equipment.

10) As discussed earlier the Flanker is unlikely to get the first shot considering the advantages the Rhino enjoys in terms of information dominance. Kinematical performance will not enable first shot if the Rhino remains undetected by the Flanker. In any case a “first shot” is unlikely to be inside the NEZ and thus the 4 round salvo would not increase the PK.


11) The assumption that DRFM deception jamming technology will reduce an AIM-120D’s PK to less than 50% has no real world evidence or even balanced logic behind it. The previous discussion on PK was on average PK not specific missile shot PK and has nothing to do with determining a specific shot’s chances. Thus the below 50% PK on an AIM-120D is an imaginary number. Considering the generic disadvantages this technology has (unless you know the seeker hardware and software that govern the missile it is extremely difficult to effectively fool an advanced active seeker, and them the EM source will itself guide the missile) in most occasions 50% PK reduction is optimistic in my opinion. Even if that is the case the significantly inferior R-77E’s seeker must provide a far inferior PK.


12) TVC will have no positive effect on a platform’s chances of survival with an inbound BVR missile. TVC improves instantaneous turn rates which has a positive impact on WVR engagements, however when dodging a missile the system becomes counter-productive. TVC allows higher instantaneous turn rates (moves the nose around quicker) by diverting thrust; however this has the effect of bleeding airspeed and kinematic energy through increased drag and decreased thrust through axis of movement. Slowing down and thus putting yourself in a low energy state is effectively suicide when facing an incoming, 50g+ rated, BVR missile in a high energy state. It’s impossible to out turn a missile, TVC or not. The missiles Achilles heal is the fact that after the motor burns out (usually after a few dozen seconds) its bleeding energy, and if you can bleed enough energy out of the missile by keeping in a high energy state it is feasible to, in fact, make it impossible for the incoming to maintain the intercept track. The key is to reduce the missiles energy state as early and as much as possible, and TVC only hurts this process. In this situation TVC is a liability simply because it robes you of your greatest asset, energy. However “bleeding” incoming missiles is becoming less and less effective; Meteor and AIM-120D use motors that provide thrust throughout the flight profile (through Ramjet or multi-stage burn rocket motor) equating to high end game energy states.


Since all of the AIM-120s fired are identical in kinematic performance and seeker jam resistance, any measure applied by the Flanker driver which is effective against one AIM-120 round in the salvo is apt to produce the same effect against all AIM-120 rounds - a problem the Flanker driver does not have due to diversity in seeker types and missile kinematics.

13) The number game of missile exchange applies to AMRAAM’s in the same manner it does to Russian missiles. If an AMRAAM has a PK of 50% within the NEZ, 2 AIM-120’s will increase the PK to 75%. The superior seeker performance and ECCM more than makes up for the mixed bag of seekers employed in Russian doctrine (western fighters are also equipped with effective IRCM). Just because a DRFM SPJ is successful in fooling one missile does not increase its chances of repeating that success with the second. Realistically if a platform’s IRCM are as effective as its ECM and the process of employing both is relatively automated, and are not missile specific, mixed seeker incomings should not have any additional effect in terms of countermeasures. Kinematical difference is negligible considering in this scenario (within the NEZ) both of the incoming will be in a much higher energy state and can turn much tighter than the target (Russian or western), thus any difference is academic. In any case the Boeing Joint Dual Role Air Dominance Missile or JDRADM is the intended to replace the AIM-120D as the US’s primary BVR weapon. The JDRADM will incorporate IIR and Active Radar seeker technology providing a mixed seeker on every missile (enabling precision strike capability), the system should be operational within the next 5 to 10 years and deployed on F/A-18F’s and F-35’s.


Currently classified capabilities such as the use of the APG-79 or APG-81 AESA radar as an Xband high power jammer against the Russian BARS or Irbis E radar are not a panacea, and may actually hasten the demise of the F/A-18E/F or F-35 JSF in a BVR shootout.This is for the simple reason that to jam the Russian radar, the APG-79 or APG-81 AESA radar must jam the frequencies being used by the Russian radar, and this then turns the APG-79 or APG-81 AESA radar into a wholly electronically predictable X-band high power beacon for an anti-radiation seeker equipped Russian BVR missile such as the R-27EP or R-77P. The act of jamming the Russian radar effectively surrenders the frequency hopping agility in the emissions of the APG-79 or APG-81 AESA radar, denying it the only defence it has against the anti-radiation missile. A smart Russian radar software designer will include a "seduction mode" to this effect, with narrowband emissions to make it very easy even for an early model 9B-1032 anti-radiation seeker. The flipside of the electronic combat game is no better. The F-14A/B/D included the AAS-42 Infrared Search and Track set which allowed a target to be tracked despite hostile jamming of the AWG-9/APG-71 radar. It is clear that the addition of the podded AAS-42 to the Super Hornet and "air to air" use of the JSF EOTS are intended for much the same purpose.


While this may permit the continuing use of the AESA radar to datalink midcourse guidance commands to the AIM-120s, it does nothing to deny the Flanker its own BVR shot. The notion that the defensive jamming equipment and infrared decoys will be highly effective against late model Russian digital missile seekers can only be regarded to be optimistic.


14) The extremely narrow and focused EM beam coupled with excellent side lobe performance that allow 3rd gen AESA’s to be used as stand off jammers also mean that if the anti radiation missile is not within the boundaries of the beam itself it will likely not be able to detect the EM source (unlike DRFM deception SPJ’s which do not transmit on a single bearing). Thus unless the radar is attempting to jam the missile itself its range will be reduced dramatically. Contemporary BVR missiles achieve current range performance through using semi-ballistic flight profiles. Due to the limitations of line of sight, the AR AAM will have to behave like a beam rider, achieving comparable range performance to early, beam riding, variants of the AIM-7 (comparable in terms of size) thus leading to a maximum effective range in the 20~30nm ballpark. The exact effective range 3rd gen AESA’s can effectively apply EA effects remains classified, however the USN stated that its effective range was “tactically significant” inferring comparable or greater range to a BVR missile max engagement envelope, or ~100nm. Thus in real terms the AR variant of the R-27 will have no effect on EA capability employed by the F/A-18F or F-35 unless said platforms are in near WVR. In real terms the capability is useless in the vast majority of the BVR regime.


Even within this “effective range” all the transmitting platform has to do is stop jamming the target for a matter of seconds and the incoming missile will lose lock. Once the missile looses the track it will not be able to manoeuvre with the target and when transmission resumes the missile will be out of its acquisition “basket” (i.e. the beam). The F/A-18F can then continue to apply EA effects on the target at will, disrupting comms and degrading radar performance. The only way AR variants of the R-77 or R-27 will be effective is if the transmitting platforms continue to jam the target right up until missile impact, indeed even if the missile is within a km or two and the target stops transmitting the shot is rendered useless. Against a fighter this weapons system has almost no chance of a kill due to the speed and manoeuvrability of the target and fleeting nature of the EM source. The best one can hope for is compelling the threat to cease applying EA on you for a matter of seconds.


15) Currently Russian designers have yet to produce a digital IIR missile seeker for the R-73 missile, which still relies on analogue rotating reticule technology last seen in the west on the AIM-9L/M. Due to the lack of international interest there is, to my knowledge, no major drive for digital IIR seekers on Russian BVR or WRV weapon system’s.


In electronic warfare terms neither side has a decisive advantage, but the Flanker does have a decisive advantage in aircraft and missile kinematics and in having up to six times the payload of BVR missiles to expend. The simple conclusion to be drawn is that operators of the F/A-18E/F or F-35 JSF should make every effort to avoid Beyond Visual Range combat with late model Flankers, as the best case outcome is parity in exchange rates, and the worst case outcome a decisive exchange ratio advantage to the Flanker. Given the evident design choices the Russians have made, this is not an accident, but rather a consequence of well thought through operational analysis of capabilities and limitations of contemporary BVR weapon systems.

16) The ability to apply EA effects at stand off range is currently an ability that the Flanker does not enjoy, and will not, ever (the last production Flanker, the SU-35BM, is equipped with the Irbis PESA radar and its likely that the first Russian platform to field an advanced AESA capable of EA will be the T-50 PAK FA), the F/A-18F and F-35A do however. Additionally the ECCM employed by 3rd gen AESA’s are significantly more advanced then their Russian peers. The random frequency modulation employed by LPI AESA’s make them virtually impossible to jam through active cancellation and deception simply because it is impossible to predict the next frequency the AESA will use on any number of its beams (i.e. its random). In order to effectively jam the LPI AESA with deception or active cancellation techniques the SPJ or EA source would have to transmit on as many as a thousand specific frequencies which have ben chosen at random by the Radar, i.e. basically impossible. The only form of ECM that has any effect on 3rd gen AESA’s is 80’s vintage noise jamming, because it transmits loudly on all frequencies throughout the band. This form of ECM has virtually been rendered obsolete by the increased D&T performance of FCR’s (increased burn-through capability) and the HOJ capability provided by many contemporary BVR weapons. The AN/ALR-679(v)3 is a fully digital RWR currently deployed on the F/A-18F, it’s half a generation ahead of current gen (analogue) Flanker RWR. Presently Russian digital RWR technology is still in the developmental stage. Clearly in every area of EW, ECM, ECCM & ELINT the F/A-18F & F-35A hold a distinct advantage.


This conclusion is typical of the tactics, techniques and devices Kopp uses to argue his case. The premises of many of the conclusions stated on the final paragraph are built on arguments made previously under false logic (such as using average PK to determine specific PK) or flat out falsification (such as the inferior war load). Using the faulty or misleading arguments outlined in previous paragraphs, each sprinkled with real capability and fact to increase the feeling of legitimacy, to arrive at the desired conclusion can be very convincing. Hence we must examine the whole article in order to dismantle the conclusion.


How did Dr Kopp reach the conclusions of a best case parity exchange ratio without examining the effect of information dominance and networking on the engagement? The primacy of ISR capability and information distribution has been clearly illustrated in every high intensity conflict fought by the west in the post cold war era. Surely the impact of VLO should be considered before making such damning conclusions? Rendering threat radar performance practically irrelevant should be worth consideration shouldn’t it, particularly considering X band radars dominate BVR engagements? Not once was the effect of RCS reduction addressed in the whole article. On three or four occasions Kopp examines an engagement that is clearly 4th gen platforms manoeuvring within the others radar footprint, and then lumps the F-35 in the conclusion even though VLO renders the previous comparison utterly moot.


In fact how is a Flanker going to achieve a 1 to 1 exchange ratio with an F-35 when it lacks the ability to effectively engage or track the platform with its primary sensor at BVR? Oh, that’s right the IRST! Yet another conclusion drawn from a previous argument based on misleading information and half truths. Not even western designers have achieved performance even close to AESA radars with IIR technology, and even Dr Kopp admits the Russians are yet to field systems as advanced as operational western designs (the developmental OLS on the MiG-35 is the only Russian system comparable to current gen western technology like PIRATE). The critical factor with IRST technology is it can not effectively search a large volume in the same manner as a Radar, its akin to searching for an aircraft in the sky with a pair of binoculars when you don’t know its there and you cant hear it. Even if technically an IRST can detect an afterburning F-35 at 50 or 100km, without another sensor cueing the IRST (like if you heard the aircraft or someone else told you to look with your binoculars) its chances are one in a million. Even if the IRST does acquire the F-35 it can not effectively track the target (IRST’s can not generate range information and thus a track) and relies on a laser range finder. The only feasible way for an IRST to track a VLO target is if it is cued by an RWR/ESM, which is difficult considering all F-35’s comms and active sensors are LPI, and in combat many will have stringent EMCON procedures applied (i.e. probably EM Cold receiving sensor information from other platforms). In short the F-35 equipped force will have a near clear picture of the battle space, and the Flanker equipped force will have nothing of the sort i.e. wont be able to detect or track the threat platforms with supporting ISR platforms or fighter Fire Control Radars. Anyone who has an objective viewpoint and has examined the effect on information dominance on modern air campaigns (including desert storm) should come to the conclusion that a 1 for 1 exchange ratio is extremely optimistic for the Flanker equipped force.


Over and over again Kopp presents opinion as fact and the authority the average reader grants the writer allows him to effectively do so, often without question. He continually uses prior conclusions as evidence, however those prior conclusions are invariably built on analysis that either deliberately omits vital elements or blatantly falsifies information. In effect Kopp has constructed a house of cards with specious analysis and conclusion using prior specious analysis and falsehood as its foundation, which like any house of cards collapses if one critically examines the assumptions and claims that hold the entire argument together. Someone who continually needs to resort to such tactics to argue his case must have a serious personal interest in being seen to be correct (even if in reality he is not) that goes far beyond pride or patriotic interest. Indeed the systematic way Dr Kopp builds artificial conclusions on spurious analysis and distortion indicates a malicious intention to mislead the reader rather than stimulate thought and genuine debate.


Resources:

http://www.janes.com/defence/news/jdw/jdw000904_5_n.shtml

http://www.janes.com/extracts/extract/jalw/jalw3025.html

http://www.ausairpower.net/APA-Rus-BVR-AAM.html

http://www.ausairpower.net/APA-Flanker.html

http://www.defenseindustrydaily.com/218m-for-new-aim120d-amraam-lead-materials-02249/

Friday, September 12, 2008

The integrated air defence system Australia had to have.

Australia enjoys a unique geographical position with perhaps the most strategic depth of any nation. However this tyranny of distance comes at a price. With an arc measuring over 6500 km’s of air and ocean that make up the sea-air gap to our north, calling the task of defending our northern approaches for a navy of twelve major surface combatants and six submarines challenging is perhaps somewhat of an understatement. Therefore the long range, firepower and speed of response that air power provides means the RAAF will always play the primary role in the defence of the sea-air gap. The RAAF’s ability to monitor, operate in and dominate the battle space to our north is and has been a cornerstone of the nations defence in the post world war era. Consequently in order to maintain the capability edge the RAAF has enjoyed over our neighbors in the last 6 decades a world class, integrated air defence system has been implemented by the ADF and should be fully operational by 2013.

An improved kill chain:

In order to implement the improvement in capability needed every link in the kill chain is either undergoing significant upgrade or new elements are being added to achieve a truly flexible and lethal air combat system.

Providing theatre wide ISR capability is the Jindalee Operational Radar Network (JORN) which has a range in excess of 3000km’s. JORN provides early warning capability throughout the sea-air gap and is capable of monitoring most aircraft (non-VLO) and practically all naval traffic throughout the northern approaches. The system works by refracting HF radio waves off the ionosphere to achieve ranges well beyond conventional radar limitations. The transmitter and receiver arrays are both located in central Australia over 1000km’s inland at Longreach Queensland and Laverton Western Australia. This distance from any threat does limit the systems vulnerability, with only a small number of global powers possessing the capability to effectively reach the systems vital components and none in our region. It appears the system does have some current limitations however; the resolution achieved by HF may not be high enough for weapons cueing, particularly when dealing with airborne threats. Therefore JORN can not effectively act as a targeting platform and is essentially a wide area surveillance asset.

JORN's sensor footprint







In order to provide target quality radar track data on air and sea targets the RAAF has ordered 6 E-737 Wedgetail Airborne Early Warning & Control (AEW&C) aircraft scheduled for initial operating capability (IOC) in 2010. Each of these world leading new platforms is equipped with Northrop Grumman’s revolutionary Multi-role Electronically Scanned Array (MESA) radar, which is in effect a large and extremely sophisticated AESA. Exact radar capabilities are classified but the MESA is reported to have an IFF (Identify Friend or Foe) range in excess of 500 kilometres and can track over 3000 targets. The L band MESA will be able to very precisely track small, high speed, low altitude targets such as Anti Ship Missiles in addition to allowing individual platforms to take ‘EM cold’ AIM-120 missile shots. Wedgetail will provide the ADF with a stand off targeting and surveillance capability that is highly mobile, extremely capable and precise. It is likely to be the nucleus of all future RAAF packages after its introduction.


E737 Wedgetail







The RAAF’s main air superiority asset, the F/A-18C/D HUG Hornet is likely to continue to see service until 2017. The Hornet fleet has undergone significant upgrades throughout its service with the RAAF and is now far more capable than when originally delivered. The inclusion of the AN/APG-73 radar, a fully glassed cockpit, Link 16, AN/ALR-67(V)3 Radar Warning Receiver (RWR) and a modernized weapons suite including the AIM-132 ASRAAM provides the RAAF with a very capable platform even considering the current and projected threat environment.

F/A-18C Hornet


With the announcement of the retirement of the F-111C~G fleet in 2010 and its replacement with the F/A-18F Block II the RAAF will receive its first new combat platform in over 20 years. The F/A-18F BII is a highly sophisticated multi role fighter that is based on a revised legacy Hornet airframe and is about 30% larger. Although visually the Super Hornet may seem similar to its predecessor the two only share only 10% commonality. The F/A-18F BII is equipped with a “5th generation” avionics suite lifted from failed X-32 JSF contender built around the AN/APG-79 AESA radar. This system is described by many as the most capable fighter sized radar operational anywhere, with extremely small side lobes, significantly greater detection and track radii than legacy radar’s, Low Probability of Intercept (LPI) search and track, improved resistance to Electronic Countermeasures (ECM), a latent electronic attack capability (EA) and near instantaneous scan rates. This in combination with the other advanced features of the avionics suite such as the world leading Human User Interface (HUI), fibre-optic data bus and digital AN/ALR-67 (V)3 RWR makes the F/A-18F BII an extremely capable strike asset and Beyond Visual Range (BVR) fighter.

F/A-18F Super Hornet







The addition of the F-35A to the RAAF’s order of battle in 2015 (under the current plans) will add LO to the significant capabilities the Super Hornet provides, in addition to an even more advanced HUI, Electro Optical (EO) and Electronic Warfare (EW) suite’s. The 5th generation F-35A is a quantum leap in capability as the first LO platform operated by the RAAF, and is at least half a generation ahead of any possible threat platform out to 2025.

The RAAF has operated nearly all of the AIM-120 AMRAAM derivatives, AIM-120B first integrated on the F/A-18C/D fleet in 2002. This BVR missile has been the cornerstone of western aligned air forces for the last decade and was the first air to air missile equipped with an active radar seeker and data link to see widespread use. The latest derivative of the AMRAAM series is the AIM-120D, which will reach IOC with the USAF and USN later this year. The AIM-120D is a significantly improved AMRAAM derivative, with a maximum engagement envelope of over 180 kilometres; which is some 50 kilometres more than the longest ranging missile in the SU-30’s inventory, the R-27 ER/EA Alamo Long Burn. The AIM-120D also provides a significantly advanced seeker with improved Electronic Counter-Counter Measures (ECCM), larger acquisition basket and the ability to engage a target more intelligently. A major capability the AIM-120D provides is an improved two way data link which allows the missile to actively communicate with the launch platform relaying target acquisition data and other information. An additional capability this data link provides is the AIM-120D can be updated directly from a 3rd party, such as another platform or AEW&C asset. Currently equipped with the AIM-120C5 variant, the RAAF is almost certain to acquire the AIM-120D as soon as it is made available for export.

AIM-120D





With the retirement of the F-111 fleet and its replacement with the Super Hornet every platform in the RAAF’s order of battle will be Link 16 compatible. This high speed, high capacity, “unjamable” data link can transmit at up to 115.2 kbps allowing platforms to exchange tactical information in near real time. At the package or squadron level, Link 16 provides every platform an AEW&C generated radar picture that in addition to achieving much higher detection & track radii, will provide LPI and better ECCM (significantly so when compared to the AN/APG-73). This technique will allow said platform to engage targets without using their own radars for target acquisition and illumination which is a considerable tactical advantage. At the theatre level, Link 16 allows decision makers in the battle space to see a wide variety of ISR sources such as a JORN generated radar picture or the contacts generated by a platform’s RWR. This information distribution network will provide the RAAF with a near complete picture of the battle space particularly when the quality of the sensors feeding it is considered.

The ground component to this information gathering and distribution network is being implemented under AIR 5333 Vigilare ground based air defence system. Vigilare is a significant upgrade to the existing Command, Control, Communications & Computer (C4) systems currently used by the ADF. The system will compile data from a variety of sources such as JORN and Wedgetail and present a manageable and user friendly air picture covering Australia’s area of interest. This will provide what is considered the holy grail of air command & control, a clear and comprehensive picture of the battle space. This C4ISR platform will enable command to manage the battle space in a far more efficient manner, allowing the full potential of the ADF’s sensor systems to be utilized.

The combination of a world class information gathering and distribution network and extremely capable people, missiles and platforms will provide the ADF with an integrated air combat system without peer in the region.

Tactical Implications

State on state conflict is a systems based event, therefore the implications of this vastly improved air defence system are extremely significant and wide, ranging from the tactical to the strategic. Perhaps the greatest advantage of an extensive information gathering and distribution network is the massive improvement in situational awareness, battle space management and command decision making. The amalgamation and presentation of information provided by theatre wide ISR platforms as capable as Wedgetail and JORN have an enormous force multiplier effect. JORN will allow interception of intruding strike packages at maximum range, allowing engagement outside the threat cruise missile envelope. This capability does to an extent replace the need for a high speed interceptor. The RAAF’s maritime strike capability is also vastly enhanced by this system; it allows accurate threat assessment of enemy fleet operations, the utilization of the most effective strike profiles and the system can even conduct some battle damage assessment, all from the Australian mainland. By utilising a clear air and sea picture through out the sea-air gap, the ADF can utilise limited assets to the full. Realistically conducting an offensive campaign in JORN dominated battle space is not an attractive proposition for any of the global powers and is arguably not even realistic for any regional power.

The effects of information dominance provided by such an information gathering and distribution network are not limited only to theatre wide decisions; on the package level having information superiority is a decisive advantage. The ability to achieve the positional advantage is vital in any BVR or WVR engagement, and fighting within your own sensor footprint is a good way to ensure your ability to do just that. By providing the pilot with precise tracks of targets well beyond their own radar capabilities and the threat’s, you enable them to take the positional advantage in a number of ways, such as taking a missile shot from outside the threat’s radar footprint or from a position of altitude or kinematical advantage. In effect you allow the package to always fight on its own terms, and even in a superior platform prosecuting an engagement from a position of significant disadvantage is likely to be your demise. If the target has been engaged from outside their radar footprint, and has no AEW&C support, it’s likely the first detection of a threat would occur when the missiles radar seeker started emitting, which is far too late.



NCW concept






The effect of information distribution between platforms also has a significant effect on the employment of BVR missiles. Currently all BVRAAM’s are not truly fire and forget weapons when being used at long range. Although the R-77, PL-12/SD-10, MICA and AIM-120 series all have an inertial navigation system that can guide the missile unaided, without constant updates from the launch platform at significant ranges the disparity between the projected position and actual target track drastically reduces the probability of a kill. Therefore the launch platform has to illuminate the target for much of the missiles flight which severely limits options to manoeuvre; this significantly increases the counter engagement threat. The combination of Wedgetail, Link-16 and AIM-120D will allow the launch platform to make 150km+ ranged missile shots without using its radar as the fire control device, reducing the chance of RWR/ESM detection to near zero, achieve positional advantage, and manoeuvre virtually as soon as the missile has left the rail. The platform that is not part of a similar information gathering and distribution network will be at a severe disadvantage; prosecuting an engagement on the enemy’s terms, against a target that is rapidly manoeuvring while their own manoeuvre options are severely limited, again if the enemy launch platform is detected at all.

With the addition of the F-35A to the RAAF’s order of battle a LO platform will be added to this already formidable air defence system. With a radar cross section of less than .001 M2, contemporary radar detection levels are reduced to tactically insignificant levels. Therefore the F-35A will be able to take AIM-120D missile shots directly in front of a threat platform within what would normally be its radar footprint. This also applies to threat AEW&C platforms, LO renders them practically useless severely limiting the capability of any competing information gathering and distribution networks.


F-35A Joint Strike Fighter






The decisive advantage integrated networks provide is obvious, and once in place ensuring the integrity of your network and disrupting the enemies becomes paramount. This dual task falls primarily under the dark art of Electronic Warfare. In addition to Electronic Intelligence (ELINT), EW can be roughly divided into two major elements; disrupting the enemy’s communications and sensor capability or ECM, and keeping your sensor performance and communications intact or ECCM. Both of these capabilities are being significantly upgraded under the current modernization program.

The AN/APG-79 has a significant ECM capability that is being developed by Raytheon under the USN’s spiral development program. The extremely precise beam control and frequency modulation combined with the radar’s power output mean it can act as a very effective jammer, and according to the USN is achieving extremely substantial EA effects at “tactically significant ranges”, which would imply comparable distances to a BVR missile engagement envelope. This EA capability is intended to degrade radar capability at stand off range and interrupt data links.


An/APG-79 AESA








Although still in early development the latent EA capability of the baseline F/A-18F BII is significant, and any future software upgrades developed to exploit it will surely migrate to the RAAF fleet. A comparable capability will be provided in the F-35A’s EW suite utilising its AN/APG-81 AESA radar. In addition to the EA capabilities of the baseline Super Hornet Block 2, there has been a notable level of interest in the dedicated EW variant, the EA-18G Growler. Fitted with the AN/ALQ-99 EW system the Growler can simultaneously produce EA effects on several different frequencies with a much higher power output and range. This variant was mentioned by the Defence Minister Fitzgibbon in a recent press release announcing the continuation of the F/A-18F acquisition indicating a significant level of interest from the Ministry of Defence. The extremely complicated LPI scan techniques used in 3rd gen AESA and MESA radars give them very effective ECCM capability, the sophisticated nature of their beam and frequency modulation make them very difficult to effectively jam. Additionally Link 16 has a very effective frequency hopping capability that provides significant resistance to active jamming. EW will always be an ever evolving battle between ECM and ECCM, and thanks to the depth of the strategic alliance with the US, the ADF will have access to their ongoing EW programs which are the most extensive and well funded worldwide.

In a rapidly evolving strategic environment the construction of a world class information gathering and distribution network as the foundation of lethal integrated air defence system is a key to the ADF’s ongoing military superiority in South East Asia. Once all of the elements are in place information dominance throughout the sea-air gap is virtually guarantied, and the RAAF’s lethality will improve accordingly. The ability to apply maximum combat capability at the appropriate point through a clear air picture, to take EM cold, AEW&C cued BVR missile shots from an advantageous position then rapidly egress or manoeuvre, and degrade enemy radar performance and disrupt communications will allow the ADF to dominate practically any engagement, regardless of individual platform capability or deficiency. This only partially illustrates the importance of the integrated system when evaluating aggregate capability, and the partial futility of platform centric analysis. The preservation of truly capable people, information dominance and organization wide improvement is the key to maintaining the RAAF’s capability edge, and it is a goal that we must constantly strive to achieve.

Thursday, September 11, 2008

Russian Carrier Doctrine in the 21st Century, the Strategic Conundrum

Past Mindset/Present Doctrine

Cold War


Throughout the last half of the 20th century the Soviet Union faced a simple and clearly defined, though extremely challenging set of strategic requirements. The major threat faced by the USSR in this period came from the western alliance NATO, and any conflict between the two would have centered on the primary theater in northern Germany. The prospect of a large combined arms campaign across western Germany and on to the English Channel was the predominant strategic challenge for both east and west, and just as in 1942 the western allies’ jugular lay across the Atlantic. Supplying NATO formations in the field during high intensity operations on such a scale would require huge amounts materiel from the continental United States, were the bulk of NATO’s industrial power lay. Therefore severing NATO’s jugular through interdiction of the Atlantic Sea Lines of Communication (SLOC) became the driving strategic focus of the Red Fleet, shaping its structure, operational & tactical doctrine, vessels, equipment, weapons and training. Consequently by the 1960’s the Red Fleet became a devastating tool of naval interdiction.

By the early 1980’s structurally the Red Fleet reflected the strategic requirements that drove its development; its two major strengths lay in tools of naval interdiction, the submarine arm and land based naval aviation, both of which were the most capable (and numerous) operational anywhere. The doctrine was simple, at the operational level the combination of conventional or nuclear submarine’s with long range, land based naval aviation directed by orbital & suborbital ISR (Intelligence, Surveillance & Reconnaissance) assets. On the tactical level, local saturation of the battle space at the critical point through application of overwhelming numbers of both platforms and weapons. At both the tactical and operational level, this doctrine could be, and historically has been devastatingly effective if applied correctly.










Left: A Tu-22M Backfire Right: A Tu-16 Badger
Clearly the most formidable tool the Soviet Navy possessed in this period was its maritime strike capability. Red Fleet naval aviation was built on the long range maritime strike platform and anti ship missile (AShM), the most capable of which is the Tu-22M Backfire. The infamous Backfire boasts a refueled combat radius of several thousand nautical miles, a top sprint speed of over Mach 2, a maximum payload of 3 supersonic AShM’s and a powerful surface search radar. Coupled with the long range, supersonic AShM like the AS-4 Kitchen the Backfire became a truly fearsome maritime strike platform. During this time frame the Northern Fleet maintained 3 regiments of Tu-22M’s on the Kola peninsular poised to strike south into the Atlantic SLOC.











Tu-22M equipped with the deadly AS-4 Kitchen.
The driving factor behind the development of the Tu-22M and Soviet carrier evolution was the USN’s introduction of an extremely capable fleet interceptor, the F-14A~C Tomcat. When the Tomcat appeared on the decks of the USN’s super-carriers the Red Fleets primary maritime strike asset of the past two decades, the Tu-16 Badger was virtually rendered obsolete. The long range interception ability, high speed and multi target engagement capability provided by the revolutionary AWG-9/AIM-54 Phoenix radar missile combination, in conjunction with E-2A~C gave the USN the ability to detect, track and engage Tu-16 strike packages well outside of the Badgers AShM engagement envelope. In order to counter the lethal threat of AEW controlled, AWG-9/AIM-54 equipped, long range interceptors, a platform that could fill the Tu-16’s role with comparable or better range/payload performance and a top sprint speed of Mach 2+ was clearly required. The primary alternative, the Tu-22B Blinder was originally designed in the 1950’s. The platform however proved to be an abject failure, with poor reliability and range/payload performance. It was only produced in small numbers. Consequently it never comprehensively replaced the Tu-16 in front line formations. The eventual answer to the changed threat matrix was the vastly improved Tu-22M.














Left: an F-14 carrying a 6x AIM-54 Phoenix load Right: A Tu-95 intercepted by an F-14

Soviet Carrier

The evolution of modern soviet carriers was like the rest of the Red Fleet shaped by the strategic landscape of the cold war. Unlike the classical western train of thought on the use and purpose of the aircraft carrier, primarily power projection, Soviet doctrine did not view the carrier as a means of offense on its own. This is clearly evident in the first generation of Soviet cold war aircraft carrier, the Kiev class Heavy Aviation Cruiser. Equipped primarily with ASW helicopters and only twelve Yak-38 STOVL fighters, the Kiev’s aviation component was more akin to the intended (pre Falkland’s) use of the Invincible class as ASW platforms with a limited fleet air defense component. Designed to be the centre of surface ASW groups, the Kiev class were far from true carriers. The Kiev’s primary firepower lay in its organic AShM load, which is typical of the primacy Soviet doctrine placed on this form of weapon.

A Kiev Class Heavy Aviation Cruiser

There was however a significant shift in doctrine during the 1970’s. Due to the increasing lethality of the USN’s fleet air defense and maritime strike capability, the first true Soviet carrier was designed and commissioned. The first of its class, the 65,000 tonne Admiral Kuznetsov was and is the only true, operational Soviet carrier ever built. Equipped with a ski jump and arrestor gear, Kuznetsov can operate conventional fighters using Short Take Off but Assisted Recovery (STOBAR) techniques. Embarking a squadron of 12~16 Su-33 Flanker D fighters the Red Fleet could for the first time project a credible fighter force into the North Atlantic and beyond.

Kuznetsov had two primary effects on the cold war naval balance. For the first time Soviet ASW surface groups operating in the western Barents Sea and Arctic Ocean could enjoy credible organic fighter cover, something that had been severely lacking previously. But perhaps more importantly, now the Red Fleet had the ability to put capable fighters deep into the North Atlantic, which could then provide land based maritime strike packages with fighter escort during the terminal phase of an engagement. This would have a dramatic effect when facing a USN carrier battle group or heavily escorted convoy. In addition to attempting to intercept an inbound strike package’s ingression at Mach 2, any F-14A~C would now have to contend with a counter engagement threat. An F-14 supporting several AIM-54 missile shots would have to maneuver if engaged by an R-27 equipped Su-33, which would in turn have a dramatic effect on the Phoenix shot’s probability of a kill (PK). Providing the Tu-22M with a fighter escort would not only increase the package’s survivability but lethality as well, allowing more missile’s to be launched before interception which is critical to Soviet doctrine of battle space saturation.













Left:The Admiral Kutznetsov Right:An Su-33 Flanker D
Obviously the Soviet carrier force was designed around a distinctly different doctrine to its western counterparts, intended from the outset to work closely with the Red Fleets primary strike asset; the land based supersonic strike aircraft. The Kiev’s and Kuznetsov clearly show the Atlantic/cold war centric strategic thinking that dominated every aspect of the Red Fleet, illustrated by the fact that Soviet carriers were only designed with true power projection as a far afterthought; Kuznetsov embarking only 5 strike capable platforms. In short the Soviet aircraft carrier was designed completely around a specific set of strategic requirements with only one potential foe in mind. For better or for worse, this is the carrier force and doctrine that the modern Russian navy has inherited.

The Strategic Conundrum

After the fall of the Soviet Union in the early 1990’s, like most of the Soviet military the Red Fleet fractured into several national formations distributed between the former Soviet Republics. The largest slice of this massive pie was left to the largest former Soviet Republic, the Russian Federation. However the modern Russian Navy is but a shell of the former Red Fleet. After widespread economic collapse and massive funding shortages during the 1990’s dozens of vessels and aircraft were decommissioned, scrapped or simply left to rust in port. The carrier force was not spared either, with all 4 Kiev class cruisers sold to the Peoples Republic of China (Currently Kiev is now an operating military theme park in the port of Tianjin China, Minsk is being fitted as a museum in China) , broken up (Novorossiyk), or undergoing re-fit in order to be sold to India (Admiral Gorshkov). The only operational carrier left in the Russian navy is the Admiral Kuznetosv. The same bleak story is repeated across the breadth of the Russian navy, with land based Naval Aviation and the Submarine Arm suffering terribly throughout this dark period.












Left:A Foxtrot class SSK rusting in a Russian naval base. Right:Kiev world military theme park, Tianjin
However, fueled by high global demand for energy, oil rich Russia has seen a remarkable economic resurgence of late, allowing a significant increase in funding for the whole Russian military. Notably this precipitated the resumption of Strategic Bomber patrols in 2007 and the first operational deployment of a carrier battle group to the Mediterranean for over a decade. These are small steps, but they are the first on the long road out of the dark days of the 90’s for the Russian navy.

The strategic terrain facing the Russia in 2008 is vastly different to what the Soviet Union faced in the 1970’s and 80’s. There is now no longer any major threat to mainland Russia and no realistic possibility of a war of national survival in the foreseeable future. Therefore the driving strategic focus of virtually every aspect of the Red Fleet, naval interdiction of the Atlantic SLOC, is now a moot point. Currently the Russian navy faces the conundrum of being equipped with an operational doctrine, structure, vessels, weapons and training, all heavily optimized for a set of strategic requirements that no longer exist. In more ways than one Russia stands at the strategic crossroads.

The Contemporary Strategic Landscape

The strategic challenges facing Russia in the early 21st century differ greatly from the last half of the 20th. Apart from the fact that any real (rather than perceived) threat from NATO is now gone Russia finds itself in a greatly different position to its Soviet ancestor. The overarching strategic goal is vastly different to the ideological struggle with the west that dominated the Russian/Soviet thinking during the cold war. The contemporary prize is not ideological supremacy over a dreaded enemy, but economic growth through tapping global markets. Therefore Russia’s mid term strategic goal has shifted to becoming a viable global alternative to the US as the guarantor of local security for smaller nations.

Becoming the guarantor of regional security does grant a level of political hegemony, but more importantly it secures economic ties and reduces impediments to trade. The economic rewards of regional hegemony are clearly evident in America’s position in the Middle East, which provides the US with both a significant source of foreign investment and a large portion of its energy requirements. This fundamentally different strategic landscape posses some interesting challenges to Russian decision makers in the mid term, which will have to change not only their military structure and posture, but the way they are viewed by both the wider global community and themselves.
20% of the US's crude oil imports are from hegemonic allies in the middle east.







Emergent Russia now faces a brand new set of strategic goals, however does not currently now have the tools, or more fundamentally the doctrine to achieve them. The Russian navy is still visibly the mired in the cold war, with what operational units it has left geared heavily toward naval interdiction. If Russia is to be successful in providing security to areas of the globe that stretch beyond its current sphere of influence then it must eventually turn to its navy as a tool of power projection, something the Soviet Union only contemplated but never truly achieved. Central to this question is the current and future carrier force and specifically what role it will play in Russia’s forthcoming global strategic posture and operational doctrine.


Strategic Air Power centric operational doctrine

Perhaps the smallest shift for Russia to undertake would be to peruse a Strategic Air Power centric operational doctrine, simply because the primary element remains the land based strike platform. Operating under the pretense of strategic air power being the primary tool of power projection beyond continental Europe and Asia is well suited to the current Russian operational doctrine, tactics, training and equipment. Russia’s strategic air power is arguably in better shape than the carrier force, with several regiments of Tu-95’s, Tu-22M’s and Tu-160’s currently operational and undertaking widespread training exercises. Russia’s strategic air arm is still extremely potent, coupled with its formidable cruise missile capability it gives decision makers in the Kremlin a viable method of projecting power well beyond its borders. This seems to be the path being perused at the moment with the continued (although limited) production of the Tu-160 Blackjack and development of new stand off missile’s such as the KH-101 and KH-555.











Left:A KH-555 loaded on a Tu-95 Right:A Tu-160 launching a KH-55S Kent
However strategic air power faces a similar challenge to what soviet naval aviation faced in the 70’s and 80’s; operating at extended range against a target that may have organic fighter cover. This problem is exacerbated due to the particulars of attacking land based targets as opposed to ships in blue water. The major difference is the fact that land based targets usually enjoy a level of geographical depth. Even if your strike platform is equipped with a 300nm range standoff weapon, if the target lays 200nm inland the strike package will have to come within 100nm of going “feet dry” to reach weapons release point. Therefore the strikers will have to enter the targets fighter engagement footprint in order to employ weapons effectively. Utilizing high speed ingression and organic EWSP suites it is most likely that the strike packages would still hit their targets when facing a lesser power; however the losses may be unacceptably high considering the cost and time to manufacture a single Tu-160. Additionally the survivability of a Tu-95 when facing even a limited fighter threat may not be acceptable, significantly limiting the number of available platforms. Clearly if the Russians were facing a reasonably well equipped foe the strike packages would require fighter escort while entering the targets fighter engagement footprint.

The value of strategic strike platforms is such that even a moderate risk of loss to the targets air defense system may be enough to deter the Kremlin from taking assertive action if its direct interests or security are not threatened. However if the Russian navy could provide the strike packages with a fighter escort the risk of interception would be significantly reduced. If a Carrier battle group could be deployed to the theater, it would not need a significant amount of organic strike capability, the punching power would be delivered by the land based strike platform. Current Russian carrier doctrine and equipment is well suited to this posture. If such a scenario were to play out in 2009 and the assets were deployable, Kuznetsov deployed to theater with 16 Su-33’s could provide strategic aviation with credible fighter cover, allowing the Kremlin to apply devastating power against a much larger range of possible adversaries. This doctrinal change is cheap, effective and more to the point does not stray far from the pervasive soviet operational doctrine which preceded it.












Left:A Tu-160 escorted by a Su-27 Flanker. Right:A vulnerable Tu-95 intercepted by a Typhoon off the UK .


Aircraft Carrier centric operational doctrine

The other possible option is the pursuit of an operational doctrine and that is centered on the Carrier as the primary tool of power projection. This is the doctrine employed by the world’s greatest naval power, the United States Navy. In engagements that range from Leyte Gulf to the Operation Rolling Thunder to Operation Allied Force, the utility of the carrier as a tool of power projection has been clearly illustrated. The ability to move credible air power into the theater and sustain it there regardless of air field availability is a capability that only the carrier can provide, and the effect of a single carrier deployment to a region is greater than perhaps any other single asset. Truly the potential of a carrier to change the posture and intentions of a lesser power is profound.


Unlike the major western carrier operators (the USN and France) Russia’s carriers are poorly equipped to be used in this manner. As stated previously the air-group Kuznetsov is currently capable of embarking is heavily geared towards fleet air defense and bomber escort. However the Kuznetsov has reasonable potential as a tool of power projection, the main element needing reform is the air group. If the aging Su-33’s are upgraded to Su-30MK standard, or replaced with MiG-29K’s or the newest navalized Flanker the Su-27KUB the Russian navy will have taken a major step foreword. However this will take significant expenditure as frontline fighters are not cheap, and in the short term upgrading existing strategic air power with better standoff weapons is a cheaper and easier path to take.










Left:A MiG 29K
Right:A relative of the Flanker Family, the multi-role Su-30
The critical decisions will be in the mid term. As Kuznetsov reaches the end of its operational life, the type and nature of its replacements will define Russia’s 21st century power projection doctrine. If the replacement carriers are equipped and armed in much the same manner as Kuznetov then Russian strategic thinking will be evident; the primacy of strategic air power will remain. However if the new breed of carriers are equipped with truly multi-role fighters, and there is significant investment in the fleet logistical train to sustain deployed air groups throughout an offensive air campaign then obviously Russia will have moved to a stance similar to the major western powers.

Conclusions

The strategic geography of the 21st century is still taking shape and, in many ways is more dynamic now than it has been in the past 100 years. The emergence of new powers and new markets illustrates the clear departure from the strategic paradigm of the cold war, with contemporary strategic rivals usually also close trading partners (such as PROC & the US). In this dynamic new strategic environment the battle will no longer lay along ideological fault lines but in economic areas of interest. Therefore whatever decisions are made by the Kremlin on Russia’s future global structure and posture, clearly the current status quo can not meet the requirements of the contemporary strategic environment.

Both options have their advantages, however clearly strategic air power can never replace the utility, sustainability, firepower and psychological impact of true carrier capability. Relying on strategic air power as your primary tool has significant limitations. For Russia to achieve global presence, which is clearly the mid term goal she must enjoy truly global reach, and due to the limitations of land based air power without a global basing infrastructure it is not something that can be achieved. Without airborne refueling Russian strategic aviation is limited by range/payload constraints, which in real terms restricts combat range (with a useful payload) to the north Atlantic/Pacific, Europe, North Asia and North America. Currently it only provides Russia with regional/continental reach, far short of the truly global capability required to truly be an alternative to the US as the provider of regional security. Nevertheless Strategic Air Power offers a cheap, readymade capability that with a relatively small capital outlay can be effective in a short time-frame. It seems to be the path undertaken by the Russians in the short term.
The ill fated Soviet Ulyanovsk supercarrier, a true tool of power porjection.





Clearly post 2020 the most effective option for the Russian navy is a combination of land and naval aviation used in conjunction to achieve global strategic results. Recently the Kremlin announced plans for the construction of 5~6 aircraft carriers in the 2020+ timeframe. Obviously the achievability of this number has to be questioned, unless a small (<20kt)>
STOVL design is adopted. Perhaps a more realistic goal would be construction of three, 40,000T carriers with a comparable design to Kuznetov. For all its shortcomings in payload constraints and package generation capability, the technological simplicity of STOVL (and the complexity of steam catapults) lends it self well to the new, lean Russian navy. A sustainable number of carriers supported by land based aviation with an increasing global basing infrastructure will provide Russia with the capability it needs to achieve its strategic aims. Both the flexibility and sustainability of carrier based aviation means that only it can achieve the global reach Russia requires, however it remains to be seen whether the Kremlin has the fortitude or vision to realize that fact.